
Commutative Algebra Atiyah-MacDonald

1 Chapter 1

1.1 Rings, Ideals, Radicals

1. Exercise 1. Show that if x is nilpotent and u is a unit, x + u is a unit.

Exercise 1 solution. Suppose xm = 0. First consider u = 1. We have (1 + x)(1 − x +
x2 − ⋅ ⋅ ⋅ + (−x)m−1) = 1 + (−1)m−1xm = 1. Thus 1 + x is a unit. Now for arbitrary u,
we have u+x = u(1+u−1x), and since u−1x is clearly nilpotent and the unit group is
closed under products, u + x must be a unit as well.

2. Exercise 2. Let f = a0 + a1x + ⋅ ⋅ ⋅ + anx
n ∈ A[x]. Prove that

(a) f is a unit of A[x] if and only if all the coefficients but the constant term are
nilpotents of A and the constant term is a unit of A.

Exercise 2a solution. One direction is easy: if a0 is a unit and a1, . . . , an are
nilpotents, then a1x+⋅ ⋅ ⋅+anx

n is in the nilradical of A[x], and then the previous
problem shows that f = a0 + (a1x + ⋅ ⋅ ⋅ + anx

n) is a unit.

In the other direction, let f be a unit; suppose fg = 1. Looking at the constant
terms, it is clear that a0 is a unit. Now for the higher-degree terms, it is enough
to show an is nilpotent, for if it is, then f ′ = f − anxn is a unit by Exercise 1.
Then by the same argument it will be true that an−1, the lead coefficient of f ′,
is nilpotent, and so on down the line.

Suppose g = b0+b1x+⋅ ⋅ ⋅+bmx
m. Then anbm = 0. Furthermore, an−1bm+anbm−1 =

0; multiplying by an, we find anan−1bm + a2nbm−1 = 0. But the first term is zero
since anbm is zero. So a2nbm−1 = 0 too. Continuing inductively: the coefficient
of the term xk in the product is ∑i+j=k aibj (where i, j ≥ 0), and this is zero if
k ≥ 1 because fg = 1. If k ≥ n, writing k = m + n − r (so r ≤ m), we can rewrite
this sum as

r

∑
i=0
an−r+ibm−i = 0

provided we define an−r+i = 0 if n − r + i < 0 (which will happen if r > n). This
equation is true for all r satisfying r ≤ m, since this implies n +m − r ≥ n > 0.
(There is nothing to prove when n = 0.) We have shown anbm = 0, and we
contend arnbm−r is zero for all r ≤ m. We prove it by induction on r, with the
case r = 0 the one just handled. (In fact, we handled r = 1 as an intimation of
the induction step.) Multiply the above equation by arn:

r

∑
i=0
arnan−r+ibm−i = 0
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For all the terms with i < r, the induction hypothesis tells us arbm−i = ar−i−1ai+1bm−i =
0. Thus the equation simplifies to

arnan−r+rbm−r = a
r+1
n bm−r

and we have proven the inductive claim. (This follows Atiyah-MacDonald’s
hint.)

This holds in particular when r = m, so am+1n b0 = 0. But b0 is a unit, as we
mentioned at the beginning; so an is nilpotent. This completes the argument
that if f is a unit, then a0 is a unit, and a1, . . . , an are nilpotent (the converse
already having been established).

(b) f is nilpotent if and only if all the coefficients are nilpotent.

Exercise 2b solution. Since nilpotents form an ideal, if all the coefficients are
nilpotent then they are in the nilradical of A[x], and then f is in the nilradical
of A[x]. In the other direction, suppose f is nilpotent. Let N be the nilradical
of A. Consider the mod N reduction of f , in the ring A/N[x]. Now A/N has no
nilpotents. Thus if f mod N is nonzero, then by considering its leading term,
no power of f mod N is zero in A/N[x]. In particular, f is not nilpotent. It
follows that since f is nilpotent by assumption, f mod N is zero. But then all
of f ’s coefficients are in N, i.e. nilpotent.

(c) f is a zero-divisor if and only if f is annihilated by a nonzero element of A.

Exercise 2c solution. Certainly if af = 0, a ∈ A, then f is a zero-divisor, by
definition. In the other direction, suppose gf = 0, g ∈ A[x]. Suppose f =

a0+a1x+⋅ ⋅ ⋅+anx
n and g = b0+b1x+⋅ ⋅ ⋅+bmx

m. Let g be chosen to have minimal
degree among polynomials that annihilate f . Our basic goal is to show that g is
degree zero. Now anbm = 0 by considering the leading term of the product fg.
Therefore ang has lower degree than g. It obviously annihilates f since g does.
By the minimality of g, then, ang = 0. In particular, anbk = 0, ∀0 ≤ k ≤m. Thus
since an−1bm + anbm−1 = 0 we can deduce that an−1bm = 0 as well. Then again
an−1g has lower degree than g and annihilates f , so is zero, so an−1 annihilates
g. Continuing in like manner, by induction we find that akg = 0, ∀0 ≤ k ≤ n.
This tells us that the coefficients from f all annihilate g; thus they annihilate
its coefficients term-by-term. Any coefficient from g therefore annihilates f . It
follows by the minimality assumption on g that actually it only has a constant
term (otherwise its coefficients would violate its own minimality).

(d) f is primitive if its coefficients generate the unit ideal. Prove that a product is
primitive if and only if its coefficients are primitive.
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(Note: if the ring A is a unique factorization domain, the word “primitive” has a
slightly different meaning: in that context it means the coefficients do not have
a nonunit common factor. The two meanings coincide if the ring is a principal
ideal domain.)

Exercise 2d solution. One direction is trivial: if either f or g is not primitive,
its coefficients are contained in some maximal ideal m ◁ A, and then so are
the coefficients of fg. Thus if fg is primitive then so are f and g. In the
other direction, suppose fg is not primitive; let m be a maximal ideal of A
containing its coefficients. Let f̄ , ḡ be the residues of f, g in (A/m)[x]. If f, g
were primitive, f̄ , ḡ would both be nonzero; but this is a contradiction, because
f̄ ḡ = 0 by construction, and A/m is a field since m is maximal, so (A/m)[x] is
an integral domain. So at least one of f, g is not primitive. We deduce that if
f, g are individually primitive, so is fg.

3. Exercise 4. Show that in A[x], the Jacobson radical and nilradical are equal.

Exercise 4 solution. Since the nilradical is always contained in the Jacobson radical,
we just need to show that it is the whole thing, i.e. that any element of A[x] that
fails to be nilpotent also fails to be in the Jacobson radical.

From exercise 2b we know that if f ∈ A[x] is not nilpotent, it has some coefficient
that’s not nilpotent. Then xf has a nonconstant coefficient that is not nilpotent.
From exercise 2a we know this means 1 + xf is not a unit. By Proposition 1.9 of
Atiyah-MacDonald, this means that f is not in the Jacobson radical.

4. Exercise 6. A ring A has the property that every ideal not in the nilradical contains
a nonzero idempotent (i.e. an element x such that x2 = x). Prove that the nilradical
and Jacobson radical of A coincide.

Exercise 6 solution. Again, the task is to prove that anything non-nilpotent is not in
the Jacobson radical.

Suppose x is not nilpotent. Then the principal ideal generated by x is not contained
in the nilradical, so by the assumption about A it contains a nonzero idempotent,
i.e. there exists y such that xy is a nonzero idempotent. Then I claim 1 − xy is
not a unit. Indeed, it is an idempotent. (In general, if e is an idempotent, then
(1 − e)2 = 1 − 2e + e2 = 1 − 2e + e = 1 − e, so 1 − e is an idempotent as well.) It is not 1
because xy is not zero. An idempotent not equal to 1 can never be a unit: if e2 = e
and e is a unit, cancellation gives e = 1. Thus 1 − xy is not a unit, and Proposition
1.9 again shows that x is not in the Jacobson radical.

5. Exercise 7. Let A be a ring in which all x ∈ A satisfy xn = x for some n > 1 (depending
on x). Show that every prime ideal of A is maximal.
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Exercise 7 solution. Let p be a prime ideal of A. Then A/p is a domain in which
all x satisfy xn = x for some n > 1; i.e. x(xn−1 − 1) = 0. Since it is a domain, if x is
nonzero this means x satisfies xn−1 −1 = 0, so that xn−2 is a multiplicative inverse for
x. (Since n ≥ 2, this is defined.) This means that A/p is a field, so p is maximal.

6. Exercise 8. Let A be a nonzero ring. Show that the set of all prime ideals has
elements that are minimal with respect to inclusion.

Exercise 8 solution. First note that a decreasing family of prime ideals p1 ⊃ p2 ⊃ . . .
has prime intersection. Proof: let ab ∈ ⋂pi. Suppose a ∉ ⋂pi. Then there is some pi∗

that a is not in. For all j > i∗, this implies (by the containments) that a ∉ pj . But
then (by primality) b ∈ pj , ∀j > i

∗, and this implies (again by the containments) that
b ∈ pj ,∀j; thus b ∈ ⋂pi, so the latter is prime.

Order the set of prime ideals by reverse inclusion. We have just shown that every
chain has an upper bound on this order. Since there is at least one prime ideal (take
any maximal ideal), the set of prime ideals is nonempty, and Zorn’s lemma applies.
The maximal elements are the minimal prime ideals.

7. Exercise 10. Let A be a ring, N its nilradical. Show the following are equivalent: (i)
A has just one prime ideal; (ii) every element of A is either a unit or nilpotent; (iii)
A/N is a field.

Exercise 10 solution.

(i)⇒(iii). Suppose A has just one prime ideal p. Then N, since it is the intersection
of the prime ideals, = p. N is contained in some maximal ideal m, which is also prime,
thus N = m as well, and A/N = A/m is a field.

(iii)⇒(ii). If A/N is a field, then for every element x ∉N (i.e. every x not nilpotent),
there is a y such that x̄ȳ = 1 in A/N; i.e. xy = 1 + z for some z ∈ N. By Exercise 1,
1 + z is a unit. Then clearly x is a unit. Thus everything that is not nilpotent is a
unit.

(ii)⇒(i). On the assumption that everything in A that is not nilpotent is a unit,
we immediately get that N is maximal and is therefore prime. Since it is also the
intersection of all prime ideals, it is beneath every other prime ideal in the lattice of
prime ideals, ordered by inclusion; but since it is a maximal ideal it is also maximal
in this lattice. This can only happen if the lattice contains a unique prime ideal N.
We are done.

8. Exercise 11. A ring A is boolean if ∀x ∈ A, x2 = x. In a boolean ring, show that

(a) 2x = 0.

Exercise 11a solution. We have (x+x)2 = x+x but also (x+x)2 = x2+2x2+x2 =
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x+2x+x. So x+2x+x = x+x, and 2x = 0. (More succintly, 4x = 4x2 = (2x)2 = 2x,
so 2x = 0.)

(b) Every prime ideal p is maximal, and A/p = F2.

Exercise 11b solution. The first claim follows from the second. Let p be a prime
ideal. Then A/p is a domain, in which x2 = x still obtains, for all x in the
domain. Now being a domain, A/p is embedded in a field, which means the
polynomial x2 − x can’t have more than two roots. Since every element of A/p
is a root of this equation, actually it has at most two elements. Since a prime
ideal is proper, it has at least two. Thus it has exactly two, and is F2. We are
done.

(c) Every finitely generated ideal in A is principal.

Exercise 11c solution. Consider a finitely generated ideal (x1, . . . , xm). I claim
this ideal is generated by the single element 1 − (1 − x1) . . . (1 − xm).

To prove this, I need to show that any linear combination of x1, . . . , xm is actually
a multiple of 1 − (1 − x1) . . . (1 − xm). Consider

m

∑
i=1
aixi

where each ai ∈ A. Then consider

(
m

∑
i=1
aixi)(1 − (1 − x1) . . . (1 − xm))

The result of this multiplication is

m

∑
i=1
aixi −

m

∑
i=1
aixi(1 − xi)∏

j≠i
(1 − xj)

But xi(1 − xi) = xi − x
2
i = 0, so all the summands under the second sum vanish.

Letting χ = ∑mi=1 aixi be an arbitrary linear combination of the xi’s (i.e. an
arbitrary element of (x1, . . . , xm)), and ν = 1− (1−x1) . . . (1−xm), we have just
shown that χν = χ. So anything in (x1, . . . , xm) is actually in (ν). The reverse
inclusion is clear since ν ∈ (x1, . . . , xm). Thus (x1, . . . , xm) = (ν).

9. Exercise 12. Prove that a local ring contains no idempotent ≠ 0,1.

Exercise 12 solution. In a local ring, there is a unique maximal ideal m and everything
outside of it is a unit. (If anything outside it were not a unit, it would be contained
in a different maximal ideal, but there’s only one.) No unit not equal to 1 can be
idempotent, as we showed in Exercise 6; so we cannot find an idempotent ≠ 1 outside

Ben Blum-Smith and Carlos Ceron 5



Commutative Algebra Atiyah-MacDonald

m. It remains to show that there is not a an idempotent ≠ 0 inside m. So suppose
x2 = x and x ∈ m. Then x − x2 = x(1 − x) = 0. I claim 1 − x is a unit. If not, then
1−x ∈ m, but then 1 = x+ (1−x) ∈ m, absurd. But if 1−x is a unit, then x(1−x) = 0
implies (by cancellation of the unit) that x = 0. We are done.

1.2 Prime Spectrum

This and the next section set up fundamental tools of algebraic geometry. We gain insight
into the geometric objects under study (curves, surfaces, etc.) by looking at the ring
of polynomial functions on those objects. We also reverse the process and start with a
ring and construct an underlying geometric object of which it can be seen as the “ring of
functions.” This underlying geometric object is called its prime spectrum. The following
exercises define the prime spectrum. See the comments below on exercise 16c, and also
exercises 26-28, for more context. Also, Exercises 23-24 in Chapter 3 are aimed at fleshing
out the way in which it makes sense to think about the ring elements as “functions” on
the prime spectrum.

1. Exercise 15. Let A be a ring and let X = SpecA be the set of prime ideals of A. For
arbitrary E ⊂ A, define V (E) to be the set of all prime ideals containing E. Check
that

(a) If a is the ideal generated by E, then V (E) = V (a) = V (
√
a).

Exercise 15a solution. Any ideal containing E also contains a by definition of the
latter, so V (E) = V (a). V (a) = V (

√
a) because

√
a is precisely the intersection

of the prime ideals containing a, so any prime ideal containing a contains
√
a.

(b) V (0) =X and V (1) = ∅.

Exercise 15b solution. Every prime ideal contains 0, so V (0) =X, and no prime
ideal can contain 1, so V (1) = ∅.

(c) If (Ei)i∈I is a family of subsets of A, then

V (⋃
i∈I
Ei) =⋂

i∈I
V (Ei)

Exercise 15c solution. The left side is the set of prime ideals containing the
union of the Ei’s, while the left side is the set of prime ideals that contain Ei
for each i ∈ I.

(d) V (a ∩ b) = V (ab) = V (a) ∪ V (b).
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Exercise 15d solution. Let p be a prime ideal containing ab. I aim to show it
contains either all of a or all of b. This will show that V (ab) ⊂ V (a) ∪ V (b).
Since V (ab) ⊃ V (a ∩ b) ⊃ V (a) ∪ V (b) trivially, this will complete the problem.

Suppose p contains the product ab, and suppose there is some a ∈ a that p does
not contain. For all b ∈ b, ab ∈ ab ⊂ p, and by primality of p this means b ∈ p
∀b ∈ b, i.e. b ⊂ p.

These results show that sets of the form V (E) are closed under arbitrary intersection
and finite union and contain X,∅; thus they obey the axioms for the closed sets of a
topology; it is called the Zariski topology on X = SpecA.

2. Exercise 16. Describe SpecA for A =

(a) Z.

Exercise 16a solution. Because Z is a principal ideal domain, the nonzero prime
ideals are exactly the ideals generated by irreducible elements; i.e. SpecA is the
set of ideals generated by integer primes, and zero. The proper closed subsets
of SpecA are the finite sets of integer primes, since for any element of Z, there
are only finitely many prime ideals containing it (namely those generated by
the primes that divide it); thus V (E) is finite for a singleton E; and making E
bigger can only make V (E) smaller.

(b) R.

Exercise 16b solution. This is a field, so zero is the only prime ideal.

(c) C[x].

Exercise 16c solution. Like Z, C[x] is a principal ideal domain. Therefore
all the nonzero prime ideals are generated by irreducible elements. Since C is
algebraically closed, the irreducible elements have the form x − α for α ∈ C.
Therefore the prime ideals are (x − α) for α ∈ C, and zero. The closed sets are
finite collections of the nonzero primes, just as in the case of Z and for the same
reason.

Aside: this is a key motivating example in algebraic geometry. Because the
nonzero primes of C[x] correspond bijectively with the elements of C, we see
SpecC[x], the topological space, as basically “being” the complex plane. (Al-
though in AG we tend to think of it as a “line” because it is one-dimensional
over the base field C.) The zero ideal is included for technical reasons we will
get into later; we think of it as representing a “generic point” of the complex
plane. The elements of C[x] are naturally interpreted as functions on C; thus
in this case, the elements of the ring are naturally thought of as functions on
the prime spectrum of the ring. We will take this as a cue and, even where it
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is a less natural interpretation, we will tend to think of elements of a ring as
“functions” on the ring’s prime spectrum.

(d) R[x].

Exercise 16d solution. Now we additionally have maximal ideals generated by
quadratic polynomials of the form (x−β)(x−β̄) for β ∈ C∖R. Again, all nonzero
primes are maximal, because the ring is a principal ideal domain. (In a p.i.d.,
suppose that p = (p) is a prime ideal, and a ∉ (p), (a)+ (p) = (b). Then b ∣ p and
b ∣ a, so bc = p for some c. Because (p) is prime, b or c is a unit. If c is a unit,
b ∣ a implies p ∣ a. So if p ∤ a, i.e. a ∉ (p), then it must be b that is a unit. This
is to say, (p) is maximal.) Closed sets are thus finite collections of real points
and pairs of complex conjugate points.

(e) Z[x].

Exercise 16e solution. Aside: I found it necessary, in proving the classification
below of the prime ideals of Z[x], to refer to Gauss’ Lemma, which is not
discussed in Atiyah-MacDonald. It is covered in any standard introductory text
on abstract algebra such as Artin, Algebra.

The prime ideals are (p) for p ∈ Z prime; (f) ∈ Z[x] primitive and irreducible
over Q; and (p, f) for f such that its mod p reduction is irreducible over Fp. All
the prime ideals have this form. Proof:

Let p◁Z[x] be a nonzero prime ideal. Then p ∩Z is a prime ideal of Z; either
it is 0 or else generated by p for some prime p in Z.

Case 1: It is 0. Then let f be a nonconstant polynomial in p of minimal degree.
If f is not primitive (in the sense that its coefficients have a nontrivial common
factor), then f = af ′ with a ∈ Z and f ′ primitive; since p is prime and a ∉ p (since
p ∩ Z = 0), this means f ′ ∈ p; thus we may take f to be primitive. If f is not
irreducible over Q then it is not irreducible over Z by Gauss’ lemma, and then
a factorization f = gh into nonconstant factors, together with an application of
p’s primeness, contradicts f ’s degree minimality. Thus f is irreducible over Q.
I claim that in this case, p = (f). Indeed, if g ∈ p, then divide g by f in Q[x],
obtaining an equation g = qf + r, with q, r ∈ Q[x] and deg r < deg f . Then clear
denominators, to yield mg = mqf +mr, with m ∈ Z and mq,mr ∈ Z[x]. But
then mr =mg−mqf is in p, and we conclude since f was of minimal degree in p
among nonzero polynomials, and degmr = deg r < deg f , that mr = 0. But then
r = 0, so f divides g in Q[x]; and by Gauss’ Lemma, this implies f divides g in
Z[x]. Thus p = (f).

Case 2: It is (p) for some prime p ∈ Z. Then p is the pullback (i.e. contraction,
in Atiyah-MacDonald’s language) of a prime ideal of Z[x]/(p) = Fp[x] under
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the canonical homomorphism. Since Fp[x] is a univariate polynomial ring over
a field, as in Exercises 16c and 16d, its prime ideals are the zero ideal and the
ideals generated by irreducible polynomials. In the former case, the inverse
image in Z[x] is (p), while in the latter, it is (p, f) where f is some polynomial
whose mod p reduction is irreducible over Fp.

This completes the classification of prime ideals of Z[x]; thus the description of
SpecZ[x].

What are the closed sets? Finite collections of these, with the restriction that
if a given prime ideal is in a closed set, then every ideal containing it is as well,
e.g. if (f) is in V (E), then so is (f, p) for all p.

3. Exercise 17. If f ∈ A, let Xf be the complement of V (f) in X = SpecA. (In the geo-
metric picture based on A = k[x1, . . . , xn], Xf is the complement of a hypersurface...)
Prove the following:

(a) The Xf form a basis for the Zariski topology.

Exercise 17a solution. We have to show that every open set is a union of these;
i.e. that every closed set is an intersection of V (f)’s. This is clear from Exercise
15c. Any E ⊂ A is a union of singletons {f}f∈E ; so V (E) = ⋂f∈E V (f).

(b) Xf ∩Xg =Xfg.

Exercise 17b solution. The left side is the set of prime ideals not containing f
and not containing g, i.e. containing neither f nor g. If a prime ideal fails to
contain both f and g, it can’t contain fg, by its primality. Thus Xf ∩Xg ⊂Xfg.
In the other direction, if it doesn’t contain fg then it certainly can’t contain
either f or g, just by idealhood, so Xf ∩Xg ⊃Xfg.

(c) Xf = ∅⇔ f is nilpotent.

Exercise 17c solution. This is another statement of the fact that the nilradical
is the intersection of the prime ideals. Xf = ∅ means all prime ideals contain f ;
therefore it is in the nilradical. In the other direction, if f is in the nilradical
then all prime ideals contain it, so Xf = ∅.

(d) Xf =X⇔ f is a unit.

Exercise 17d solution. The claim to be proven is equivalent to the statement
that the units of A are exactly the elements not contained in any prime ideal.
This is because any proper ideal is in some maximal ideal, which is prime. So
while obviously a unit is not in any prime ideal, also anything not in a prime
ideal must have the principal ideal it generates be everything, thus it is a unit.

(e) Xf =Xg if and only if (f) and (g) have the same radical.
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Exercise 17e solution. Xf = Xg if and only if V (f) = V (g). Now V (f) =

V (
√

(f)) and V (g) = V (
√

(g)) by Exercise 15a. Therefore if (f) and (g) have
the same radical, Xf = Xg. Conversely, if Xf = Xg then f and g are contained
in the same prime ideals. But the radical of (f) is exactly the intersection of
the prime ideals containing f , and similarly for (g), so this condition implies√

(f) =
√

(g).

(f) X is quasicompact. (Aside: in algebraic geometry, the word “compact”, mean-
ing, as usual, that every open cover has a finite subcover, tends to be replaced
with the word “quasicompact”, because this property is possessed by most of
the spaces under study, even if they are not what we are used to thinking of
as compact. Fore example, SpecC[x], the algebraic-geometric model of the
topological space C, is quasicompact, even though it is not compact in the Eu-
clidean topology. There are other more advanced concepts that do a better job
of substituting for the usual notion of compactness.)

Exercise 17f solution. Open sets of X are unions of Xf ’s. Thus an open covering
is a union of Xf ’s. If there is a finite subcover of Xf ’s then there is also a finite
subcover of the original cover, consisting of the original open sets containing the
selected Xf ’s. So it is sufficient to show that if a family {Xf}f∈E covers X, a
finite subfamily does too.

To say that {Xf}f∈E covers X is to say that ⋂f∈E V (f) = ∅. I.e. there is no
prime ideal of A containing all the f ’s in E. Let a be the ideal generated by all
the f ’s in E. Since it is not contained in a prime ideal it must be (1). Then
there is an equation

1 =
m

∑
i=1
aifi

occurring in A. The finite set {fi}
m
1 already generates (1), so it is not contained

in any prime ideal; so the Xfi cover X.

(g) More generally, each Xf is quasicompact.

Exercise 17g solution. Suppose we have a family of Xg covering Xf . This
means that the V (g)s’ intersection lies inside V (f). I.e. that every prime ideal
containing all the g’s also contains f . Then f is in every prime ideal containing
the ideal generated by the g’s; in other words, it is in the radical of the ideal
generated by the g’s. Then some power of f is in this ideal, so a finite number
of g’s generate a power of f . The intersection of the corresponding V (g)’s is
the set of prime ideals containing each of the g’s, and since any of these prime
ideals therefore contains the generated power of f , since they are prime they all
contain f and so are in V (f). Then the associated Xg’s cover Xf .
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(h) An open subset of X is quasicompact if and only if it is a finite union of Xf ’s.

Exercise 17h solution. If it is open, it is a union of Xf ’s, as we showed in (a), so
if it is not a finite union, then clearly it is not compact: the Xf ’s of which it is
a union form an open cover with no finite subcover. Conversely, if it is a finite
union, we use our above result, and the following basic lemma: a finite union
of quasicompact sets is quasicompact. Proof: let X1, . . . ,Xm be quasicompact
subsets of X. An open cover for ⋃mi=1Xi is individually an open cover for each
Xi, which has a finite subcover, and they can be amalgamated to give an open
cover for the union.

4. Exercise 18. Let x ∈ SpecA be a point of SpecA the topological space, and let px be
the same element of SpecA except stressing that it is a prime ideal of A.

(a) Show {x} ⊂ SpecA is closed if and only if px is maximal.

Exercise 18a solution. If a closed set contains a given prime ideal, it must also
contain every prime ideal containing this one; in particular, every maximal ideal
containing it. So if px is not maximal, then any closed set containing x must
also contain any m ⊃ px.

(b) Show the closure of {x} is V (px).

Exercise 18b solution. This is basically just the definition, plus the observation
in the solution of Exercise 18a. V (px) contains {x} and the points corresponding
to the prime ideals containing px. We observed in the solution of Exercise 18a
that any closed set containing {x} must contain all of these points. Thus V (px)
is a closed set containing {x} and contained in any closed set containing {x}.
I.e. it is the closure of {x}.

(c) y ∈ {x}⇔ py ⊃ px.

Exercise 18c solution. This is the same observation. y is in x’s closure means
that py lies above px, so it is forced into any closed set containing x.

(d) X is a T0 space, i.e. any two points are separated by an open set containing one
and not the other.

Exercise 18d solution. Equivalently, there is a closed set containing one and not
the other. (Take its complement to find the desired open set.) If x ≠ y and
py does not contain px, then V (px) is the desired closed set: py is not among
the prime ideals containing px literally means y ∉ V (px). If py does contain px,
switch x and y to find what we seek.

5. Exercise 21. Let φ ∶ A→ B be a ring homomorphism. Let X = SpecA,Y = SpecB. If
q ∈ Y , then φ−1(q) is a prime ideal of A, i.e. a point of X. So φ induces a mapping
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φ∗ ∶ Y →X. (This map is called the pullback of φ.) Show that

(a) If f ∈ A then φ∗−1(Xf) = Yφ(f), and thus that φ∗ is continuous.

Exercise 21a solution. What is φ∗−1(Xf)? Xf is every prime ideal of A not
containing f . So φ∗−1(Xf) is the set of prime ideals q of B such that φ∗(q) =
φ−1(q) does not contain f . But φ−1(q) doesn’t contain f if and only if q doesn’t
contain φ(f). So φ∗−1(Xf) is the set of prime ideals q of B that fail to contain
φ(f). This is Yφ(f).

It follows that φ∗ is continuous because we have just shown that the inverse
image of a basic open set is open.

(b) If a is an ideal of A, then φ∗−1 (V (a)) = V (ae).

Exercise 21b solution. What is φ∗−1 (V (a))? This is the set of all prime ideals
of B (i.e. elements of Y ) such that when they are pulled back along φ to
A, they contain a. Thus they have to contain a’s image under φ, and this
means they have to contain the smallest ideal containing φ(a), which is ae.
Conversely, anything that contains ae pulls back to something containing a, so
it is in φ∗−1 (V (a)). Thus φ∗−1 (V (a)) is equal to the set of prime ideals of B
containing ae, which is V (a)e.

(c) If b◁B, then φ∗ (V (b)) = V (bc).

Exercise 21c solution. φ∗ (V (b)) is the set of preimages of the prime ideals of
B containing b. Every such preimage contains bc. Thus it is a subset of V (bc);
this is a closed set containing it. Therefore V (bc) ⊃ φ∗ (V (b)). We still need to
show that V (bc) is the smallest closed set containing φ∗(V (b)); i.e. that any
closed set containing φ∗(V (b)) contains V (bc).

All closed sets have the form V (a) for some ideal a of A. Since, as a generality,
the intersection of the prime ideals containing a is

√
a (Proposition 1.14), V (a) =

V (
√
a), and V (a) contains V (bc) if and only if

√
a ⊂

√
bc. Thus we must show

that if V (a) contains φ∗(V (b)), then
√
a ⊂

√
bc.

If V (a) contains φ∗(V (b)), then each preimage of each prime ideal containing b
contains a. Thus their intersection does as well. Because intersections commute
with contractions, ⋂p⊃b pc = (⋂p⊃b p)

c
= (

√
b)
c
, so we have just shown that a ⊂

(
√
b)
c
. It is straightforward to check that radicals commute with contractions,

so we have a ⊂
√
bc. Taking radicals on both sides completes the proof that

√
a ⊂

√
bc, establishing what was needed.

(d) If φ is surjective, then φ∗ is a homeomorphism of Y onto the closed subset
V (kerφ) of X. (In particular, SpecA and SpecA/N are naturally homeomor-
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phic.)

Exercise 21d solution. If φ is surjective, then φ∗ is a one-to-one correspondence
of prime ideals of A containing kerφ (i.e. of V (kerφ)) with prime ideals of B,
by the correspondence theorem. This correspondence respects both primeness
and all ideal containments, so it preserves the definition of closed sets and is
thus a homeomorphism.

Since all prime ideals of A contain N, V (N) = SpecA, so this is a homeomor-
phism of SpecA to SpecA/N, where φ is the canonical homeomorphism.

(e) If φ is injective, then φ∗(Y ) is dense in X. More generally, φ∗(Y ) is dense in
X⇔ kerφ ⊂N.

Exercise 21e solution. We aim at the more general result. Let φ ∶ A → B be a
ring homomorphism such that N ⊃ kerφ. Let V be a closed subset of X = SpecA,
and let Y = SpecB. I aim to show that if V is proper, it doesn’t contain φ∗(Y ),
implying that φ∗(Y ) is dense in X. Let V be a proper closed subset of X. It has
the form V (a) for some (radical) ideal a◁A. Furthermore, a is not contained
in N; it contains some a that is not nilpotent. Then φ(a) is not nilpotent either
(because N ⊃ kerφ); so there exists a prime ideal of B, say q, that does not
contain it. Then qc = φ−1(q) = φ∗(q) does not contain a. It is therefore a prime
ideal i.e. point of φ∗(Y ) that does not contain a and therefore is not an element
of V (a). Thus V (a) does not contain φ∗(Y ).

In the other direction, if N ⊅ kerφ, then there exists non-nilpotent a such that
φ(a) = 0. Then V (a) is a closed subset of X containing the entire image φ∗(Y ),
because φ∗(q) = φ−1(q) contains a ∈ φ−1(0) for every prime ideal q ∈ Y . Mean-
while, because a is not nilpotent, there exists a prime ideal not containing it, so
V (a) is a proper closed subset of X, and φ∗(Y ) is therefore not dense in X.

(f) Let ψ ∶ B → C be another ring homomorphism. Then (ψ ○ φ)∗ = φ∗ ○ ψ∗.

Exercise 21f solution. We just evaluate the two sides on the same element p of
SpecC:

(ψ ○ φ)∗(p) = (ψ ○ φ)−1(p) = φ−1(ψ−1(p)) = φ∗ ○ ψ∗(p)

(g) Let A be an integral domain with just one non-zero prime ideal p, and let K be
A’s field of fractions. Let B = A/p×K. Define φ ∶ A→ B by φ(x) = (x̄, x), where
x̄ is the image of x in A/p. Show that φ∗ is bijective but not a homeomorphism.

Exercise 21g solution. Both X = SpecA and Y = SpecB have two elements:
SpecA = {p, (0)} since the zero ideal is prime because A is an integral domain.
Meanwhile, A/p is a field, since p must be maximal (since it must have a maximal
ideal which is prime, and p is the only nonzero prime); and K is of course a
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field; so B is a product of two fields and thus its only prime ideals are {0} ×K
and A/p × {0}. (It is generally true that the only ideals of a product of fields
k × k′ are the whole thing, zero, and k × {0} and {0} × k, and the latter are the
only primes.)

Now φ∗({0} ×K) = p since φ(x) = (0, x) for any x ∈ p, and φ∗(A/p × {0}) = (0),
because φ(x) = (x̄, x) ∈ A/p × {0} implies x = 0. Therefore φ∗ is a bijection.
However, the Zariski topology on SpecB is discrete, since neither prime ideal is
contained in the other, whereas the Zariski topology on SpecA is not, because
p ⊃ (0) and thus any closed set containing (0) also contains p.

1.3 Affine Varieties

1. Exercise 26. Here Atiyah and MacDonald define MaxSpec (the set of maximal ideals),
noting that in general it does not have the nice functorial properties of Spec, because
maximal ideals don’t always pull back to maximal ideals. But in some cases it is useful
because the elements of MaxSpec can be identified with the points of a topological
space.

Let X be a compact hausdorff topological space and let C(X) be the ring of continu-
ous real-valued functions on X. For x ∈X, let mx be the ideal of functions vanishing
at x. It is maximal because it is the kernel of the homomorphism C(X) → R that
maps f ↦ f(x), and this homomorphism is surjective with image the field R. So
x↦ mx is a mapping µ of X into X̃ = MaxSpecC(X). The problem aims to show µ
is a homeomorphism.

(a) Show that µ is surjective: in other words, every maximal ideal of C(X) has the
form mx.

Exercise 26a solution. Let m be a maximal ideal of C(X). Suppose that the
functions f ∈ m had no common zero. By continuity, the set Xf on which a
given function f is nonzero is open. If the functions f of m have no common
zero, then the nonzero sets cover X. Thus {Xf}f∈m is an open cover for X,
and by compactness it has a finite subcover {Xf1 , . . . ,Xfn}. Then the functions
f1, . . . , fn have no common zero. Then the function f = f21 + ⋅ ⋅ ⋅ + f

2
n ∈ m is

nonvanishing, and thus invertible in C(X). It is thus a unit, and m is the unit
ideal, a contradiction. So the functions of m have some common zero, say x.
Then m ⊂ mx, with equality because the former is maximal.

(b) By Urysohn’s lemma, the continuous functions separate the points of x. Thus
show µ is injective.
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Exercise 26b solution. This is because if x ≠ y, then there is a continuous
function zero at x and nonzero at y and conversely. Thus mx ≠ my.

(c) Let f ∈ C(X). Let Uf = {x ∈X ∶ f(x) ≠ 0}. (I feel Atiyah and MacDonald could
have called this Xf to stress the connection with the notation in Exercises 17
and 21.) Let Ũf = {m ∈ X̃ ∶ f ∉ m}. Show that µ(Uf) = Ũf . Show that the
open sets Uf , resp. Ũf , form a basis for the topology of X, resp. X̃, and thus
µ is a homeomorphism. (This is a motivating example for algebraic geometry
because it shows that the geometric structure of X can be recovered from the
ring C(X).)

Exercise 26c solution. f(x) ≠ 0 if and only if f ∉ mx; therefore µ(Uf) = Ũf .

It is clear why Ũf are a basis for the topology of X̃; they are just the intersections
with MaxSpecC(X) of a basis for the topology of SpecC(X); see problem 17.

As for why Uf form a basis for the topology of X, this is due to Urysohn’s lemma
(which applies because every compact hausdorff space is normal i.e. T4). Given
an arbitrary open set V , pick a point x ∈ V . The sets {x} and X ∖ V are both
closed and disjoint; thus by Urysohn’s lemma, there is a continuous function f
with f(x) = 1 and f ∣X∖V = 0. Then Uf is contained in V and contains x. Since
this construction can be performed for any x ∈ V , it can be used to express V
as a union of the Uf ’s. This shows the Uf ’s form a basis for the topology.

Thus X can be reconstructed as a topological space from C(X).

2. Exercise 27. Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0

be a set of polynomial equations (indexed by α) in n variables, with coefficients in
k. The set X of all points x = (x1, . . . , xn) ∈ k

n which satisfy these equations is an
affine algebraic variety.

Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the property that g(x) = 0
for all x ∈X. Check that this set is an ideal I(X) in the polynomial ring. It is called
the ideal of the variety X. The quotient ring

k[X] = k[t1, . . . , tn]/I(X)

is the ring of polynomial functions on X, because two polynomials g, h define the
same function on X if and only if g − h vanishes at every point of X, that is, if and
only if g − h ∈ I(X).

Let ξi be the image of ti in k[X]. The ξi (for 1 ≤ i ≤ n) are the coordinate functions
on X: if x ∈X, then ξi(x) is the ith coordinate of x. k[X] is generated as a k-algebra
by the coordinate functions, so is called the coordinate ring (or affine algebra) of X.
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As in Exercise 26, for each x ∈X let mx be the ideal of all f ∈ k[X] such that f(x) = 0;
check that it is a maximal ideal of k[X]. Hence, if X̃ = MaxSpec(k[X]), we have
defined a mapping µ ∶X → X̃, namely x↦ mx.

It is easy to show that µ is injective: if x ≠ y, we must have xi ≠ yi for some i
(1 ≤ i ≤ n), and hence ξi − xi is in mx but not in my, so that mx ≠ my. What is
less obvious (but still true) is that µ is surjective. This is one form of Hilbert’s
Nullstellensatz (see chapter 7).

Exercise 27 solution. Clearly I(X) is closed under addition since if f, g both vanish
on all of X, so does f + g. Furthermore, if a is any function at all (in particular any
element of k[t1, . . . , tn]), then af also vanishes on all of X. Thus I(X) is an ideal.

As in Exercise 26, mx is maximal because it is the kernel of the surjective homo-
morphism from k[t1, . . . , tn] to k defined by mapping f ↦ f(x), and the image is a
field.

Commentary: this discussion shows that, as in Exercise 26, the MaxSpec of the
ring k[X] is in bijection with the points of X. If we take a subset of X to be
closed if it is defined by the vanishing of some polynomials, we get a topology on X
called the Zariski topology, and this bijection also identifies this topology with the
topology of MaxSpeck[X]. Thus again we get a way to go back and forth between
a topological space, X, and a ring of functions k[X] on this topological space. The
next exercise shows how algebraic maps between two affine varieties X and Y can
be turned into corresponding ring homomorphisms between their respective rings of
functions. This is the complement (in the concrete situation of affine varieties) of
the process described in Exercise 21, which shows (in the more general context of an
arbitrary ring) how to take a ring homomorphism and turn it into a continuous map
between topological spaces.

3. Exercise 28. Let f1, . . . , fm be elements of k[t1, . . . , tn]. They determine a polynomial
mapping φ ∶ kn → km: if x ∈ kn, the coordinates of φ(x) are f1(x), . . . , fm(x).

Let X,Y be affine algebraic varieties in kn, km respectively. A mapping φ ∶ X → Y
is said to be regular if φ is the restriction to X of a polynomial mapping from kn to
km.

If η is a polynomial function on Y , then η ○ φ is a polynomial function on X. Hence
φ induces a k-algebra homomorphism k[Y ]→ k[X], namely η ↦ η ○ φ. Show that in
this way we obtain a one-to-one correspondence between regular mappings X → Y
and k-algebra homomorphisms k[Y ]→ k[X].

Exercise 28 solution. We have been given a map π from Mor(X,Y ), the set of poly-
nomial maps from X to Y , to Hom(k[Y ], k[X]), the set of k-algebra homomorphisms
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from k[Y ] to k[X]. As in the problem statement, π is defined by π(φ) = (η ↦ η ○φ).
We need to show it is a bijection.

First, distinct polynomial maps lead to distinct k-algebra homomorphisms, because
the coordinate functions separate points. In more detail, if φ ∶X → Y and φ′ ∶X → Y
are distinct polynomial maps from X to Y , then there is some x ∈ X such that
φ(x) ≠ φ′(x). This means φ(x) and φ′(x) differ in at least one coordinate, say the
ith. Let ξi be the ith coordinate function on Y (see Exercise 27 for the definition of
the coordinate functions). Then ξi(φ(x)) ≠ ξi(φ

′(x)), and therefore ξi ○ φ ≠ ξi ○ φ
′.

Thus the k-algebra homomorphisms π(φ) = (η ↦ η ○ φ) and π(φ′) = (η ↦ η ○ φ′) are
distinct, since they differ at ξi. Thus π is injective.

To show that π is surjective, we need to show that any k-algebra homomorphism
f ∶ k[Y ] → k[X] has the form π(φ) = (η ↦ η ○ φ) for some polynomial map φ from
X to Y . So let f be an arbitrary such k-algebra homomorphism. Let ξ1, . . . , ξm be
the coordinate functions on Y . Then ξ1, . . . , ξm generate k[Y ], so f is completely
characterized by its action on the ξ’s, and each f(ξi) is an element of k[X], i.e.
a polynomial function on X. The desired polynomial map φ ∶ X → Y is given by
x↦ (f(ξ1)(x), . . . , f(ξm)(x)), because then ξi ○ φ(x) = f(ξi)(x). Thus, ξi ○ φ = f(ξi)
for each i, and since a k-algebra homomorphism k[Y ] → k[X] is determined by its
action on the coordinate functions ξi, this means that f = (η ↦ η ○ φ) = π(φ) as
desired. Thus π is surjective.
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